
Tips on handling various status messages found in
CodeVita

1.Compile Time Error:
A successful compilation simply returns silently. Hence your aim should
be that your program is so agreeable with the compiler that the compiler
happily returns silently. If you get a CTE, do as follows:
First and foremost you have to ensure that you use the same versions of
compilers that the server-side uses. A list of compilers is provided here. 2. If you
are using the same compiler, then mentally you have to treat Warnings as
errors because warnings prevent the compilers from returning silently. So get
rid of all Warnings in your compilation process. 3. If you have meticulously
followed the above, it is highly unlikely that you will get CTE 4. In extremely rare
case, a negligibly small possibility exists that under heavy load, the servers and
hence the compilers malfunction and hence your compilation fails. The
probability of this happening is less than 0.01% because CodeVita engineering
is now mature enough to handle thousands of concurrent compilations. In your
thinking you should simply discount the possibility that the compiler has
malfunctioned, but if you have a good enough reason to suspect that this is
what might have happened, then simply resubmit the code after some time.
This kind of behavior is temporal and the probability of CTE vanishing on its own
is pretty high. 5. Finally, whenever a CTE occurs the CodeVita Judge provides
the exact error message that the compiler has produced. Using this message as
a clue you should be able to troubleshoot past your compilation problems.

2.Runtime Error (RTE):
A Runtime error is caused because either your program or the runtime has
thrown some exception. Since RTE could be caused because of N number of
reasons it is difficult to pin- point and hence provide a crisp error message
unlike CTE.
Let us divide RTE into two parts:
1)Systemic Faults and
2)Submitted Program Faults.

Systemic Faults: Systemic Faults can give rise to RTE if the Judge is not properly
configured to evaluate submissions. In most cases the configurations are on a per-
language basis.
However systemic faults exhibit binary behavior i.e. either it will work for all
submissions in a given language or it may work for none of the submissions in
that given language. It cannot be that some programs in a given language
receive RTE and some don’t. If this happens to be the case then it is almost
always Submitted Program Fault.
It is also possible that one language is configured properly, but some other
isn’t. Let’s say that C is properly configured and Java is not properly
configured. In this case all the C submissions will be devoid of Systemic Faults
whereas all the Java programs will be susceptible to Systemic Faults. Faults in
configuration of one language do not have an impact on behavior of other
language. It is the duty and task of the CodeVita Engineering team that

systemic faults are eliminated before the Judge is thrown open to Code Vita
participants. Unlike CTE, RTE is not a transient fault and does not change
behavior even under load.
Submitted Program Faults: In 99.99% of cases, RTE is caused by Submitted
Program Faults. Very rarely, and we don’t recollect any instance in past 4
seasons of CodeVita that a Systemic Fault causing RTE has ever been exposed
in Live Rounds. Submitted Program Faults could be caused because of any
reasons, but not limited to those stated below.
• Failure to adhere to input and output specifications is the number one

cause of RTE.

• Known programming violations like Illegal memory access or Null Pointer
Exception etc., result in RTE.

• RTE are more common to languages like C and C++ where static time
type checking is lenient and hence faults manifest only at runtime.

• Any logical mistake that leads to throwing an exception receives an RTE.

If you have participated in previous seasons of CodeVita, request you share your
stories on how you got past RTEs.

3.Time Limit Exceeded (TLE):
In automated code evaluation environments optimal utilization of shared
resources such as CPU and memory are key to delivering good performance.
However no matter how well a platform is engineered, performance can
deteriorate if submitted code is a CPU or Memory hog. So, one poorly written
program can affect the evaluation times of several others. In such situations,
platforms including CodeVita have no choice but to abort the rogue program.
The threshold when this behavior kicks in, in CodeVita, is different for different
questions.
For example, if a problem is purely compute-intensive i.e. has CPU-affinity then
the programs may have a smaller threshold, say 1 second. Likewise, if a
program requires lot of memory accesses to be performed, it may have slightly
higher threshold, say 2 seconds. In CodeVita, these limits will be implicit. What
this means is that it will not be explicitly spelled out what is the Time Limit for
each question. However, with focus a reader can figure out that the moment
this status message is received, one has to minimize the runtime of the
program.
To cite a contextual example, let’s say a question in CodeVita requires you to sort
millions of elements. If you implement a naive algorithm like Bubble Sort whose
Order complexity is O(n^2) you are almost certain to receive a TLE. A solution to
get past TLE, would be to implement a better sorting algorithm, say Quick Sort
whose Order complexity is O(n log n). This will drastically reduce the sorting time
and the program can finish within thresholds.
Now that we have seen what a TLE is and why it occurs and how system
responds to it, let’s see some of the ways in which you can overcome TLE:
• It is a good practice to insert timestamps in your code to know how much
time is spent in different parts of your code. So in case you get a TLE, you
already know where your bottlenecks are.

• Your choice of data structure and algorithm plays a critical role in
assessing whether you will or will not receive a TLE.

• Keep a profiler handy and more importantly know how to use it so that in
case of TLE you may get insights on runtime of your code.

• With TLE, some good programmers have a reverse gripe i.e. they write so
optimized code that they feel that the thresholds are too lenient. Such
programmers are advised to have patience. May be with a few questions, few
programmers can get away even with sub- optimal code but it cannot happen
always. Keep up the good habit of writing optimized code. There will be a
question where only optimal code will pass and rest will receive TLE. It is just
that, not all questions are geared towards figuring out if the participant can
write optimal code. Finally, if all other things are equal, and two teams are tied
for the last spot, then Code Efficiency which is one of the governing parameter,
will kick in and the more efficient code will win. So, something like this can
happen – you have written a (n^2) complexity algorithm and your friend’s
(n^3) implementation also passes the evaluation.

So, let there be no more TLEs. Sophisticated programmers use many brilliant
techniques, like commenting certain sections of the code and figuring out the
bottlenecks if a TLE status gets converted into Wrong Answer status. We wish
you All the very best!
4.Memory Limit Exceeded (MLE):
Just like TLE appears due to longer than allowed runtime execution times, MLE
occurs due to higher than permissible memory utilization. More memory
utilization is a function of two things:
1.The language of your choice and,
2.How you handle memory allocation / de-allocation in your code.

Memory footprint of languages: Standalone languages like C and C++ have
better memory footprint than managed runtime languages like Java and C#.
Interpreted languages like Perl, Python, Ruby etc. are somewhere in between.
CodeVita systems are 64-bit and we calibrate the footprint of languages before
setting memory limits on them. It can be safely said for the kind of problems
that are asked in CodeVita, the memory footprint of language runtimes far
exceed the amount of memory that a program may possibly need to use to
arrive at the correct solution. Hence MLE status is almost always due to poor
memory management strategy implemented in the program.
Memory Management in own code: Statically allocating large chunks of
memory or speculatively allocating memory based on own understanding of
questions is usually the main reason for MLE. Other than that poor data
structures and algorithms also cause more than permissible usage of memory.
In CodeVita, memory footprint of every process is tracked and rogue processes
using more memory are terminated and a status of MLE is returned to the
submitter of that program. There are no general rules on how to reduce
memory utilization. The rules are language and context dependent. So ensure
that you are aware of how to techniques to reduce memory utilization in
language of your choice.

5.Wrong Answer:

Wrong Answer is caused because your program didn't give the same output as
expected for 1 or more testcases.
Whatever questions are being asked in CodeVita goes through thorough testing.
So even if your program executes successfully on your system, which does not
indicate its correctness. It should pass through all the private testcases of our
problem. So before you raise any queries, verify your program thoroughly.

6.Accepted:
Accepted status comes when your program has passed all the testcases i.e., it
provided the same output as expected.
If your program shows this status, your problem is solved and you should move
on to the next problem.

7.Presentation Error:
‘Presentation Error’ status comes when your program output differs from
the expected output by a whitespace character.
Even if your program shows this status, your problem is considered as solved. So
don't try to get it in Accepted status and move on to the next problem.

8.Difference between Accepted and Presentation Error:
Both ‘Accepted’ and ‘Presentation Error’ status are same. If either of these two
statuses appears while evaluating your program, consider it as solved and move
on to next problem.

9.Public TestCase Vs Private TestCase:
While submitting solutions on CodeVita site, on clicking on ‘Compile and Run’
button, the program gets evaluated for public testcases only which are given in
problem text.
Getting a ‘Presentation Error’ or ‘Accepted’ status here, merely means that
your program is compiling and executing successfully against public testcases.
Simply executing ‘Compile and Run’ is not enough. In order to run private
testcases against programs, one needs to Click on ‘Go to Submit’ page button,
then click on ‘Submit’ button to evaluate program.
This submission will be considered for Ranking. This can end up in any of the 8
statuses. Also, getting ‘Accepted’ or ‘Presentation Error’ while ‘Compile and
Run’ does not guarantee that the same status will appear after Submit
functionality.
As described above, this is because ‘Compile and Run’ is run against public
testcases, while Submit is run against private testcases. Public testcases are
those testcases which are present in problem text whereas private testcases
are hidden.

C) General Instructions and Best Practices:
• You will have 6 hours to take the contest. Your 6 hours start the moment
you click on ‘Start Contest’ button after you login to codevita.tcsapps.com on
the day of the contest.

• In order to get your full quota of 6 hours, ensure that you login to the
contest at least 6 hours before the contest ends.

• If you login with less than 6 hours remaining for the overall contest, you
will have less time to complete the contest.

• Verify that you can log into CodeVita platform codevita.tcsapps.com
with your mail ID Password, post your registration.

• Network - Ensure that you have reachability with codevita.tcsapps.com
from a reliable and stable network (say Home network or Institute network).
The mobile network is not recommended due to fluctuations.

• Expert Tip: It is advised to set up your local environment much before
the contest so that you get accustomed to it. Match your language compilers
and/or interpreters with the supported versions, the list can be viewed at the
compilers and interpreters tab after login. Coding in a local System is not only
fast, it is convenient too as per our top coders, as it saves the code directly to
your machine. Coding online invokes you to submit twice, once for public
testcase and then final submission for Private testcases. Compiling offline
allows you to upload the final solution only once and saves time.

• Submit solutions to the questions only in supported languages like C,
C++, C#, Java, Perl, Python, Ruby and PHP.

• Familiarize yourself with application controls, look and feel and feedback
mechanisms.

• If you are going to be using shared infrastructure like a college Lab,
ensure that https://codevita.tcsapps.com is accessible from your target
environment. Also, check that your college firewall is not blocking the
contest site.

• The site is best viewed in modern browsers like Chrome, FireFox and IE 9
and above. Ensure you are using a compatible browser.

• Ensure that your browser supports JavaScript. Site will not work
properly if your browser has blocked JavaScript. Bookmark the site for quick
access later on.

• Please go through the guidelines, sample questions, self-help
trivia and FAQs in codevita.tcsapps.com before starting the contest.

• Last but not the least, plagiarism will have very serious consequences in
the actual contest, we have an entire team and a strong, robust system
dedicated to check plagiarism, so refrain from copying codes as a general
practice.

Thank You and Happy
Coding! Best
Regards,
Team CodeVita

	1. Compile Time Error:
	2. Runtime Error (RTE):
	3. Time Limit Exceeded (TLE):
	4.Memory Limit Exceeded (MLE):
	5. Wrong Answer:
	6. Accepted:
	7. Presentation Error:
	8. Difference between Accepted and Presentation Error:
	9. Public TestCase Vs Private TestCase:
	Thank You and Happy Coding! Best Regards,

